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Today’s Lecture

 Recursive Method Analysis
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Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

   System.out.println(n);

   if (n== 1) {

      return;

   }

   show(n-1);

}
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What is the time 
complexity of 
this method?



Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

   System.out.println(n);

   if (n== 1) {

      return;

   }

   show(n-1);

}
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What is the time 
complexity of 
this method?

Answer: O(n)

n is reduced by 1 for each 

recursive call until it reaches 

the base case (n==1)



show Recursion Trees

 Recursion trees for calls to show.
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Show(4)

Base case is 1

Show(3)

Show(2)

Show(1)

Call show(4)

Total Method Calls: 4

Show(5)

Show(4)

Show(3)

Show(2)

Call show(5)

Total Method Calls: 5

Show(1)

Show(6)

Show(5)

Show(4)

Show(3)

Call show(6)

Total Method Calls: 6

Show(2)

Show(1)

Time complexity
O(n)



Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

   System.out.println(n);

   if (n== 1) {

      return;

   }

   show(n-1);

   show(n-1);

}
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What is the time 
complexity of 
this method?

There are 2 

recursive calls 



show Recursion Trees

 Recursion trees for calls to show.
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Base case is 1

Show(2)

Show(3)

Call show(2)

Total Method Calls: 3

Show(2)

Time complexity
???

2 

levels



show Recursion Trees

 Recursion trees for calls to show.
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Base case is 1

Show(2)

Show(1)

Show(3)

Show(1)

Call show(3)

Total Method Calls: 7

Show(2)

Show(1) Show(1)

Time complexity
???

3 

levels



show Recursion Trees

 Recursion trees for calls to show.
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Base case is 1

Show(3)

Show(2)

Show(4)

Show(2)

Call show(4)

Total Method Calls: 15

Show(3)

Show(2) Show(2)

Time complexity
???

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

4 

levels



show Recursion Trees

 Recursion trees for calls to show.
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Base case is 1

Show(n-1)

Show(n-2)

Show(n)

Show(n-2)

Call show(n)

Total Method Calls: ???

Show(n-1)

Show(n-2) Show(n-2)

Time complexity
???

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

n 

levels

Multiple levels of recursive calls here…



Geometric Series

 Geometric Series
s = ar0 + ar1 + ar2 + ar3 + ar4 + ...

 Geometric Series of the First n Terms
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a – Coefficient of each term.
 r – Common ratio between terms.

 Closed form for sum of first n terms:

sn =    𝑎
1−𝑟𝑛

1−𝑟
  for r != 1

          𝑎𝑛        for r = 1
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Adapted from the following Wikipedia page:

https://en.wikipedia.org/wiki/Geometric_series

n terms

https://en.wikipedia.org/wiki/Geometric_series


Geometric Series - Example

 Formula
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a=1, r=2, n=3

s3 = 1*20 + 1*21 + 1*22

 Closed form formula:

sn =    𝑎
1−𝑟𝑛

1−𝑟
  for r!=1

          𝑎𝑛        for r=1

s3 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−23

1−2
 = 1

−7

−1
 = 1 7 = 7
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3 terms (n=3)



Geometric Series - Example

 Formula
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a=1, r=2, n=4

s4 = 1*20 + 1*21 + 1*22 + 1*23

 Closed form formula:

sn =    𝑎
1−𝑟𝑛

1−𝑟
  for r!=1

          𝑎𝑛        for r=1

s4 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−24

1−2
 = 1

−15

−1
 = 1 15 = 15
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4 terms (n=4)



show Recursion Trees

 Recursion trees for calls to show.
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Base case is 1

Show(3)

Show(2)

Show(4)

Show(2)

Call show(4)

Total Method Calls: 15

Show(3)

Show(2) Show(2)

Time complexity
2n

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

4 

levels

s4 = 1*20 + 1*21 + 1*22 + 1*23

s4 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−24

1−2
 = 1

−15

−1
 = 1 15 = 15

24 = 16 which is approximately 15

20

21

23

22



Calculate nth Fibonacci Number

Mathematical Definition for Calculating 

the nth Fibonacci Number

Fn  = 0,   if n = 0

  1,   if n = 1

   Fn-1 + Fn-2, if n >= 2
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Fibonacci Number Implementation

 Method to calculate the nth Fibonacci number.
 There is a small amount of code, but it is not very 

efficient.

int fibonacci(int n)

{

 if (n == 0 || n == 1)

  return n;

 else

  return fibonacci(n-2) + fibonacci(n-1);

}
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F3 Recursion Tree

 Calculate F3 (so n=3)
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F3

F0

F2 F1

F1

F0 and F1 
are base 

cases



F4 Recursion Tree

 Calculate F4 (so n=4)
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F4

F1 F0

F3 F2

F2

F0 and F1 
are base 

cases

F1

F0
F1



F5 Recursion Tree

 Calculate F5 (so n=5)
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F5

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
???

F0 and F1 
are base 

cases



F5 Recursion Tree

 Calculate F5 (so n=5)
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F5

Fill out the rest of the tree 
with pretend nodes to make 

it complete. 

Now what is the time 
complexity?

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
???

FF

FF FF FF FF FF FF FF



F5 Recursion Tree

 Calculate F5 (so n=5)
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F5

Fill out the rest of the tree 
with pretend nodes to 

make it complete

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
2n

FF

FF FF FF FF FF FF FF

s5 = 1*20 + 1*21 + 1*22 + 1*23 + 1*24

s5 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−25

1−2
 = 1

−31

−1
 = 1 31 = 31

25 = 32 which is approximately 31



Recursive Fibonacci Time 
Complexity

Recursive Fibonacci Time Complexity

 The recursive Fibonacci time complexity is generally 
thought of as O(2n).

 A more precise time complexity is actually O(1.6n).

 For this course on exams and quizzes we will use the 
generally accepted O(2n) as the time complexity.
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End of Slides

 End of Slides
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