
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Recursive Method Analysis

© 2023 Arthur Hoskey. All
rights reserved.

Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

 System.out.println(n);

 if (n== 1) {

 return;

 }

 show(n-1);

}

© 2023 Arthur Hoskey. All
rights reserved.

What is the time
complexity of
this method?

Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

 System.out.println(n);

 if (n== 1) {

 return;

 }

 show(n-1);

}

© 2023 Arthur Hoskey. All
rights reserved.

What is the time
complexity of
this method?

Answer: O(n)

n is reduced by 1 for each

recursive call until it reaches

the base case (n==1)

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Show(4)

Base case is 1

Show(3)

Show(2)

Show(1)

Call show(4)

Total Method Calls: 4

Show(5)

Show(4)

Show(3)

Show(2)

Call show(5)

Total Method Calls: 5

Show(1)

Show(6)

Show(5)

Show(4)

Show(3)

Call show(6)

Total Method Calls: 6

Show(2)

Show(1)

Time complexity
O(n)

Show All Numbers from n to 1

 A recursive method to show all number from n to 1.

void show(int n)

{

 System.out.println(n);

 if (n== 1) {

 return;

 }

 show(n-1);

 show(n-1);

}

© 2023 Arthur Hoskey. All
rights reserved.

What is the time
complexity of
this method?

There are 2

recursive calls

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Base case is 1

Show(2)

Show(3)

Call show(2)

Total Method Calls: 3

Show(2)

Time complexity
???

2

levels

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Base case is 1

Show(2)

Show(1)

Show(3)

Show(1)

Call show(3)

Total Method Calls: 7

Show(2)

Show(1) Show(1)

Time complexity
???

3

levels

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Base case is 1

Show(3)

Show(2)

Show(4)

Show(2)

Call show(4)

Total Method Calls: 15

Show(3)

Show(2) Show(2)

Time complexity
???

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

4

levels

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Base case is 1

Show(n-1)

Show(n-2)

Show(n)

Show(n-2)

Call show(n)

Total Method Calls: ???

Show(n-1)

Show(n-2) Show(n-2)

Time complexity
???

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

n

levels

Multiple levels of recursive calls here…

Geometric Series

 Geometric Series
s = ar0 + ar1 + ar2 + ar3 + ar4 + ...

 Geometric Series of the First n Terms
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a – Coefficient of each term.
 r – Common ratio between terms.

 Closed form for sum of first n terms:

sn = 𝑎
1−𝑟𝑛

1−𝑟
 for r != 1

 𝑎𝑛 for r = 1

© 2023 Arthur Hoskey. All
rights reserved.

Adapted from the following Wikipedia page:

https://en.wikipedia.org/wiki/Geometric_series

n terms

https://en.wikipedia.org/wiki/Geometric_series

Geometric Series - Example

 Formula
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a=1, r=2, n=3

s3 = 1*20 + 1*21 + 1*22

 Closed form formula:

sn = 𝑎
1−𝑟𝑛

1−𝑟
 for r!=1

 𝑎𝑛 for r=1

s3 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−23

1−2
 = 1

−7

−1
 = 1 7 = 7

© 2023 Arthur Hoskey. All
rights reserved.

3 terms (n=3)

Geometric Series - Example

 Formula
sn = ar0 + ar1 + ar2 + ar3 + ar4 + ... + arn-1

 a=1, r=2, n=4

s4 = 1*20 + 1*21 + 1*22 + 1*23

 Closed form formula:

sn = 𝑎
1−𝑟𝑛

1−𝑟
 for r!=1

 𝑎𝑛 for r=1

s4 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−24

1−2
 = 1

−15

−1
 = 1 15 = 15

© 2023 Arthur Hoskey. All
rights reserved.

4 terms (n=4)

show Recursion Trees

 Recursion trees for calls to show.

© 2023 Arthur Hoskey. All
rights reserved.

Base case is 1

Show(3)

Show(2)

Show(4)

Show(2)

Call show(4)

Total Method Calls: 15

Show(3)

Show(2) Show(2)

Time complexity
2n

Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1) Show(1)

4

levels

s4 = 1*20 + 1*21 + 1*22 + 1*23

s4 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−24

1−2
 = 1

−15

−1
 = 1 15 = 15

24 = 16 which is approximately 15

20

21

23

22

Calculate nth Fibonacci Number

Mathematical Definition for Calculating

the nth Fibonacci Number

Fn = 0, if n = 0

 1, if n = 1

 Fn-1 + Fn-2, if n >= 2

© 2023 Arthur Hoskey. All
rights reserved.

Fibonacci Number Implementation

 Method to calculate the nth Fibonacci number.
 There is a small amount of code, but it is not very

efficient.

int fibonacci(int n)

{

 if (n == 0 || n == 1)

 return n;

 else

 return fibonacci(n-2) + fibonacci(n-1);

}

© 2023 Arthur Hoskey. All
rights reserved.

F3 Recursion Tree

 Calculate F3 (so n=3)

© 2023 Arthur Hoskey. All
rights reserved.

F3

F0

F2 F1

F1

F0 and F1
are base

cases

F4 Recursion Tree

 Calculate F4 (so n=4)

© 2023 Arthur Hoskey. All
rights reserved.

F4

F1 F0

F3 F2

F2

F0 and F1
are base

cases

F1

F0
F1

F5 Recursion Tree

 Calculate F5 (so n=5)

© 2023 Arthur Hoskey. All
rights reserved.

F5

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
???

F0 and F1
are base

cases

F5 Recursion Tree

 Calculate F5 (so n=5)

© 2023 Arthur Hoskey. All
rights reserved.

F5

Fill out the rest of the tree
with pretend nodes to make

it complete.

Now what is the time
complexity?

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
???

FF

FF FF FF FF FF FF FF

F5 Recursion Tree

 Calculate F5 (so n=5)

© 2023 Arthur Hoskey. All
rights reserved.

F5

Fill out the rest of the tree
with pretend nodes to

make it complete

F4

F1 F0

F3 F2

F2 F1

F0F1

F3

F0

F2 F1

F1

Time complexity
2n

FF

FF FF FF FF FF FF FF

s5 = 1*20 + 1*21 + 1*22 + 1*23 + 1*24

s5 = 𝑎
1−𝑟𝑛

1−𝑟
= 1

1−25

1−2
 = 1

−31

−1
 = 1 31 = 31

25 = 32 which is approximately 31

Recursive Fibonacci Time
Complexity

Recursive Fibonacci Time Complexity

 The recursive Fibonacci time complexity is generally
thought of as O(2n).

 A more precise time complexity is actually O(1.6n).

 For this course on exams and quizzes we will use the
generally accepted O(2n) as the time complexity.

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: Show All Numbers from n to 1
	Slide 4: Show All Numbers from n to 1
	Slide 5: show Recursion Trees
	Slide 6: Show All Numbers from n to 1
	Slide 7: show Recursion Trees
	Slide 8: show Recursion Trees
	Slide 9: show Recursion Trees
	Slide 10: show Recursion Trees
	Slide 11: Geometric Series
	Slide 12: Geometric Series - Example
	Slide 13: Geometric Series - Example
	Slide 14: show Recursion Trees
	Slide 15: Calculate nth Fibonacci Number
	Slide 16: Fibonacci Number Implementation
	Slide 17: F3 Recursion Tree
	Slide 18: F4 Recursion Tree
	Slide 19: F5 Recursion Tree
	Slide 20: F5 Recursion Tree
	Slide 21: F5 Recursion Tree
	Slide 22: Recursive Fibonacci Time Complexity
	Slide 23: End of Slides

